Här finns en lista av tidskriftsartiklar och bokkapitel, avhandlingar och rapporter med data från SNSN.
Svennevig, K., Hicks, S.P., Forbriger, T., Lecocq, T. … Lund, B., … (2024). A rockslide-generated tsunami in a Greenland fjord rang Earth for 9 days, Science, 385, 1196-1205, doi: 10.1126/science.adm9247
Schiffer, C., Rondenay, S., Shomali, Z.H. (2024). Seismic probing of buried ancient terrane boundaries-insight into Fennoscandia’s Palaeoproterozoic continental formation. Precambrian Research, 405, p.107376
Rathnayaka, S., A.A. Nyblade, B. Lund, C. Ammon, R. Durrheim, R. Masethe (2024). Testing the P/S amplitude seismic source discriminant at local distances using seismic events within and surrounding the Kloof gold mine, South Africa and the Kiruna iron ore mine, northern Sweden, Bull. Seismol. Soc. Am. http://doi.org/10.1785/0120230215
Heyburn, R., D.N. Green, A. Nippress, and N.D. Selby (2024) The 26 September 2022 Nord Stream Events: Insights from Nearby Seismic Events, The Seismic Record 4, 1–10, http://doi.org/10.1785/0320230047
Eggertsson, G., B. Lund, P. Schmidt, M. Roth (2024). Earthquake or Blast? Classification of Local-Distance Seismic Events in Sweden using Fully-Connected Neural Networks, Geophys. J. Int., https://doi.org/10.1093/gji/ggae018
Kind, R., Schmid, S.M., Schneider, F., Meier, T., Yuan, X., Heit, B., Schiffer, C. and AlpArray and SWATH-D Working Groups (2023). Sp converted waves reveal the structure of the lithosphere below the Alps and their northern foreland. Geophys.J. Int., 235(2), 1832-1848.
Schiffer, C., Rondenay, S., Ottemöller, L., Drottning, A. (2023). The Moho architecture and its role for isostasy— Insights from the Lofoten-Vesterålen rifted margin, Norway. J. Geophys. Res., 128, e2022JB025983. https://doi.org/10.1029/2022JB025983
Dineva, S., C. Dahnér, D. Malovichko, B. Lund, D. Gospodinov, N. Piana Agostinetti, L. Rudzinski (2022). Analysis of the magnitude 4.2 seismic event on 18 May 2020 in the Kiirunavaara mine, Sweden, Proceedings of RaSiM 10, April 26-28, Tucson, USA, 16p.
Stähler, S.C., Zenhäusern, G., Clinton, J., Giardini, D. (2022) Locating the Nordstream explosions using polarization analysis, Seismica, 1(1). https://doi.org/10.26443/seismica.v1i1.253.
Juhlin, C., Erlström, M., Lund, B., Rosberg, J-E. (2022). Seismic reflectivity, fracturing and stress field data from the FFC-1 exploratory geothermal project in SW Skåne, Sweden, Geothermics, 105, 102521, https://doi.org/10.1016/j.geothermics.2022.102521
Mauerberger, A., Sadeghisorkhani, H., Maupin, V., Gudmundsson, O., Tilmann, F. (2022). A shear-wave velocity model for the Scandinavian lithosphere from Rayleigh waves and ambient noise - Implications for the origin of the topography of the Scandes mountain range, Tectonophysics, 838, 229507, https://doi.org/10.1016/j.tecto.2022.229507.
Beckel, R., Lund, B., Eggertsson, G., Juhlin, C. (2022). A comparison of stacking-based methods for locating natural microearthquakes with a noisy surface array, Geophys. J. Int., 228, 1918–1934, doi: 10.1093/gji/ggab437
Bulut, N., Thybo, H., Maupin, V. (2022). Highly heterogeneous upper-mantle structure in Fennoscandia from finite-frequency P-body-wave tomography, Geophys. J. Int., 230, 1197-1214, https://doi.org/10.1093/gji/ggac107
Maupin, V., Mauerberger, A., Tilmann, F. (2022). The radial anisotropy of the continental lithosphere from analysis of Love and Rayleigh wave phase velocities in Fennoscandia. J. Geophys. Res., 127, e2022JB024445, https://doi.org/10.1029/2022JB024445
Gregersen, S., C. Lindholm, A. Korja, B. Lund, M. Uski, K. Oinonen, P. Voss, M. Keiding (2021). Seismicity and Sources of Stress in Fennoscandia, In: Glacially Triggered Faulting, Eds: H. Steffen, O. Olesen, R. Sutinen, Cambridge University Press, ISBN 9781108779906, doi: 10.1017/9781108779906
Ask, M., Kukkonen, I., Olesen, O., Lund, B., Fagereng, Å., Rutqvist, J., Rosberg, J-E., Lorenz, H. (2021) Drilling into glacially triggered faults, in: Glacially Triggered Faulting, eds. H. Steffen, O. Olesen, R. Sutinen, Cambridge University Press, p. 151-174, doi:10.1017/9781108779906
Lund, B., Schmidt, P., Shomali, Z.H., Roth, M. (2021) The Modern Swedish National Seismic Network: Two Decades of Intraplate Microseismic Observation, Seismol. Res. Lett., 92, 1747-1758, doi: 10.1785/0220200435
Thybo, H., Bulut, N., Grund, M., Mauerberger, A., Makushkina, A., Artemieva, I.M., Balling, N., Gudmundsson, O., Maupin, V., Ottemøller, L., Ritter, J. (2021). ScanArray — A Broadband Seismological Experiment in the Baltic Shield, Seis. Res. Lett., 92, 2811-2823, doi: 10.1785/0220210015
Jussila, V., B. Fälth, P. Mäntyniemi, P. H. Voss, B. Lund, L. Fülöp (2021). Application of a Hybrid Modeling Method for Generating Synthetic Ground Motions in Fennoscandia, Northern Europe, Bull. Seismol. Soc. Am., 111, 2507-2526, doi: 10.1785/0120210081
Mauerberger, A., Maupin, V., Gudmundsson, Ó., Tilmann, F. (2021). Anomalous azimuthal variations with 360° periodicity of Rayleigh phase velocities observed in Scandinavia. Geophys. J. Int., 224, 1684-1704, doi: 10.1093/gji/ggaa553
Sadeghisorkhani, H., Gudmundsson, O., Li, K.L., Tryggvason, A., Lund, B., Högdahl, K. (2021) Shear-wave structure of southern Sweden from precise phase-velocity measurements of ambient-noise data, Geofys. J. Int., 225, 494–511, doi: 10.1093/gji/ggaa598.
Grund, M., Ritter, J.R. (2020). Shear-wave splitting beneath Fennoscandia — evidence for dipping structures and laterally varying multilayer anisotropy. Geophys. J. Int., 223, 1525-1547, doi: 10.1093/gji/ggaa388
Fülöp, L., V. Jussila, R. Aapasuo, T. Vuorinen, P. Mäntyniemi (2020). A Ground-Motion Prediction Equation for Fennoscandian Nuclear Installations, Bull. Seismol. Soc. Am., 110, 1211–1230, doi: 10.1785/0120190230
El-Sharkawy, A., Meier, T., Lebedev, S., Behrmann, J.H., Hamada, M., Cristiano, L., et al. (2020). The Slab Puzzle of the Alpine-Mediterranean Region: Insights From a New, High-Resolution, Shear Wave Velocity Model of the Upper Mantle, Geochemistry, Geophysics, Geosystems, 21, e2020GC008993, C008993. doi: 10.1029/2020GC008993
Hejrani, B., Balling, N., Jacobsen, B.H. and Nielsen, S.B. (2020). Is high topography around the North Atlantic supported from the upper mantle? J. Geophys. Res., 125, e2020JB019808. doi: 10.1029/2020JB019808
Ou, Q., Kulikova, G., Yu, J., Elliott, A., Parsons, B., Walker, R. (2020) Magnitude of the 1920 Haiyuan earthquake reestimated using seismological and geomorphological methods. Journal of Geophysical Research: Solid Earth, 125, e2019JB019244. doi: 10.1029/2019JB019244.
Kanamori, H., Rivera, L., Ye, L., Lay, T., Murotani, S., Tsumura, K. (2019) New constraints on the 1922 Atacama, Chile, earthquake from historical seismograms, Geophys. J. Int., X, doi: 10.1093/gji/ggz302.
Makushkina, A., Tauzin, B., Tkalcic, H., Thybo, H. (2019) The Mantle Transition Zone in Fennoscandia: Enigmatic High Topography Without Deep Mantle Thermal Anomaly, Geophys. Res. Lett., 46, doi: 10.1029/2018GL081742.
Sadeghisorkhani, H., Gudmundsson, O., Tryggvason, A. (2018) GSpecDisp: A matlab GUI package for phase-velocity dispersion measurements from ambient-noise correlations, Comp. Geosc., 110, 41-53, doi: 10.1016/j.cageo.2017.09.006.
Sadeghisorkhani, H., Gudmundsson, O., Roberts, R., Tryggvason, A. (2017) Velocity-measurement bias of the ambient noise method due to source directivity: A case study for the Swedish National Seismic Network, Geophys. J. Int., 209, 1648-1659, doi: 10.1093/gji/ggx115.
Hejrani, B., Balling, N., Jacobsen, B., England, R. (2017). Upper-mantle velocities below the Scandinavian Mountains from P-and S-wave traveltime tomography. Geophys. J. Int., 208, 177-192, doi: 10.1093/gji/ggw370.
Zardari, M.A., Mattsson, H., Knutsson, S., Khalid, M.S., Ask, M.V.S., Lund, B. (2017). Numerical Analyses of Earthquake Induced Liquefaction and Deformation Behaviour of an Upstream Tailings Dam, Adv. Materials Sci. Eng., 2017, 5389308, https://doi.org/10.1155/2017/5389308
Vinnik, L., Kozlovskaya, E., Oreshin, S., Kosarev, G., Piiponen, K., Silvennoinen, H. (2016). The lithosphere, LAB, LVZ and Lehmann discontinuity under central Fennoscandia from receiver functions, Tectonophysics, 667, 189-198, doi: 10.1016/j.tecto.2015.11.024.
Calais, E., T. Camelbeeck, S. Stein, M. Liu, T. J. Craig (2016), A new paradigm for large earthquakes in stable continental plate interiors, Geophys. Res. Lett., 43, 10,621–10,637, doi:10.1002/2016GL070815.
Sadeghisorkhani, H., Gudmundsson, O., Roberts, R., Tryggvason, A. (2016) Mapping the source distribution of microseisms using noise covariogram envelopes, Geophys. J. Int., 205, 1473 - 1491, doi: 10.1093/gji/ggw092.
Silvennoinen, H., Kozlovskaya, E., Kissling, E. (2016). POLENET/LAPNET teleseismic P wave travel time tomography model of the upper mantle beneath northern Fennoscandia, Solid Earth, 7, 425–439, doi:10.5194/se-7-425-2016.
Soomro, R. A., Weidle, C., Cristiano, L., Lebedev, S., Meier, T., PASSEQ Working Group. (2016). Phase velocities of Rayleigh and Love waves in central and northern Europe from automated, broad-band, interstation measurements, Geophys. J. Int., 2016, 204, 517-534, doi: 10.1093/gji/ggv462
Ye, L., Kanamori, H., Avouac, J-P., Li, L., Cheung, K.F., Lay, T. (2016) The 16 April 2016, Mw 7.8 (Ms 7.5) Ecuador earthquake: A quasi-repeat of the 1942 Ms 7.5 earthquake and partial re-rupture of the 1906 Ms 8.6 Colombia-Ecuador earthquake, Earth Planet. Sci. Lett., 454, 248-258, doi: 10.1016/j.epsl.2016.09.006.
Craig, T.J., E. Calais, L. Fleitout, L. Bollinger, O. Scotti (2016), Evidence for the release of long-term tectonic strain stored in continental interiors through intraplate earthquakes, Geophys. Res. Lett., 43, 6826-6836, doi:10.1002/2016GL069359.
Ahmadi, O., C. Juhlin, M.V.S. Ask, B. Lund (2015). Revealing the deeper structure of the end-glacial Pärvie fault system in northern Sweden by seismic reflection profiling, Solid Earth, 6, 621-632, doi:10.5194/se-6-621-2015.
Hejrani, B., Balling, N., Jacobsen, B., Tilmann, F. (2015). Upper-mantle P-and S-wave velocities across the Northern Tornquist Zone from traveltime tomography. Geophys. J. Int., 203, 437-458, doi: 10.1093/gji/ggv291.
Keiding, M., C. Kreemer, C.D. Lindholm, S. Gradmann, O. Olesen, H.P. Kierulf (2015), A comparison of strain rates and seismicity for Fennoscandia: depth dependency of deformation from glacial isostatic adjustment, Geophys. J. Int., 202, 1021-1028, doi: 10.1093/gji/ggv207
Köhler, A., V. Maupin, N. Balling (2015) Surface wave tomography across the Sorgenfrei-Tornquist Zone, SW Scandinavia, using ambient noise and earthquake data, Geophys. J. Int., 203,284-311, doi: 10.1093/gji/ggv297
Lund, B. (2015). Palaeoseismology of glaciated terrain. In Beer, M., Kougioumtzoglou, I.A., Patelli, E., Au, S-.K. (eds.), Encyclopedia of Earthquake Engineering, Springer Berlin Heidelberg, 1765-1779, doi: 10.1007/978-3-642-36197-5_25-1.
Kolstrup, M.L., Hung, S.H., Maupin, V. (2015). Multiscale, finite-frequency P and S tomography of the upper mantle in the southwestern Fennoscandian Shield, Geophys. J. Int., 202, 190-218, doi: 10.1093/gji/ggv130
Lindblom, E., B. Lund, A. Tryggvason, M. Uski, R. Bödvarsson, C. Juhlin, R. Roberts (2015) Microearthquakes illuminate the deep structure of the endglacial Pärvie fault, northern Sweden, Geophys. J. Int, 201, 1704-1716, doi: 10.1093/gji/ggv112.
Vinnik, L., Oreshin, S., Makeyeva, L., Peregoudov, D., Kozlovskaya, E., Pedersen, H., …, Bödvarsson, R., …, Roberts, R.,…, Shomali, H., …, Volosov, S. (2014). Anisotropic lithosphere under the Fennoscandian shield from P receiver functions and SKS waveforms of the POLENET/LAPNET array. Tectonophysics, 628, 45-54.
Silvennoinen, H., Kozlovskaya, E., Kissling, E., Kosarev, G. and the POLENET/LAPNET Working Group (2014). A new Moho boundary map for the northern Fennoscandian Shield based on combined controlled-source seismic and receiver function data, GeoResJ, 1-2, 19-37, doi: 10.1016/j.grj.2014.03.001.
Grad, M., Tiira, T., Olsson, S. and Komminaho, K. (2014). Seismic lithosphere-asthenosphere boundary beneath the Baltic Shield. GFF, 136(4), 581-598.
Pedersen, H.A., Debayle, E., Maupin, V. and the POLENET/LAPNET Working Group (2013). Strong lateral variations of lithospheric mantle beneath cratons - Example from the Baltic Shield, Earth Planet. Sci. Lett., 383, 164-172, doi: 10.1016/j.epsl.2013.09.024.
Weidle, C., Soomro, R. A., Cristiano, L., Meier, T. (2013). Identification of response and timing issues at permanent European broadband stations from automated data analysis, Adv. Geosci., 36, 21–25, doi: 10.5194/adgeo-36-21-2013
Kind, R., Sodoudi, F., Yuan, X., Shomali, Z. H., Roberts, R., Gee, D. G., …, Geissler, W. H. (2013). Scandinavia: A former Tibet?. Geochemistry Geophysics Geosystems, 14(10), 4479-4487.
Maupin, V., A. Agostini, I. Artemieva, N. Balling, F. Beekman, J. Ebbing, R.W. England, A. Frassetto, S. Gradmann, B.H. Jacobsen, A. Köhler, T. Kvarven, A.B. Medhus, R. Mjelde, J. Ritter, D. Sokoutis, W. Stratford, H. Thybo, B. Wawerzinek, C. Weidle (2013) The deep structure of the Scandes and its relation to tectonic history and present-day topography, Tectonophysics, 602, 15-37, doi: 10.1016/j.tecto.2013.03.010
Frassetto, A., Thybo, H. (2013) Receiver function analysis of the crust and upper mantle in Fennoscandia – isostatic implications, Earth Planet. Sci. Lett., 381, 234-246, doi: 10.1016/j.epsl.2013.07.001
Tarvainen, M., Valtonen, O., Husebye, E. and Lund, B. (2013). Seismic analysis of aircraft accidents. Natural Science, 5(7), 811-817.
Medhus, A.B., N. Balling, B. H. Jacobsen, C. Weidle, R. W. England, R. Kind, H. Thybo, P. Voss (2012) Upper-mantle structure beneath the Southern Scandes Mountains and the Northern Tornquist Zone revealed by P-wave traveltime tomography, Geophys. J. Int., 189, 1315-1334, doi:10.1111/j.1365-246X.2012.05449.x
Roy, C. and Ritter, J.R.R (2012) Complex deep seismic anisotropy below the Scandinavian Mountains, J. Seismol., 17, 361-384, doi: 10.1007/s10950-012-9325-4.
Zhu, H., Bozdag, E., Peter, D., Tromp, J. (2012) Structure of the European upper mantle revealed by adjoint tomography, Nature Geosci, 5, 493-498, doi: 10.1038/ngeo1501.
Eken, T., Plomerová, J., Vecsey, L., Babuška, V., Roberts, R., Shomali, H., Bödvarsson, R. (2012). Effects of seismic anisotropy on P-velocity tomography of the Baltic Shield. Geophys. J. Int., 188(2), 600-612.
Juhlin, C. and Lund, B. (2011). Reflection seismic studies over the end-glacial Burträsk fault, Skellefteå, Sweden. Solid Earth, 2, 17-23, doi:10.5194/se-2-9-2011
Juhlin, C., Dehghannejad, M., Lund, B., Malehmir, A. and Pratt, G. (2010). Reflection seismic imaging of the end-glacial Pärvie Fault system, northern Sweden. J. App. Geophys., 70, 307-316, doi: 10.1016/j.jappgeo.2009.06.004
Eken, T., Plomerová, J., Roberts, R., Vecsey, L., Babuška, V., Shomali, H., Bödvarsson, R. (2010). Seismic anisotropy of the mantle lithosphere beneath the Swedish National Seismological Network (SNSN). Tectonophysics, 480(1-4), 241-258, doi: 10.1016/j.tecto.2009.10.012
Gregersen, S., Voss, P., Nielsen, L.V., Achauer, U., Busche, H., Rabbbel, W., Shomali, Z.H. (2010). Uniqueness of Modeling Results from Teleseismic P-Wave Tomography in Project Tor, Tectonophysics, 481, 99-107, doi:10.1016/j.tecto2009.01.020
Eken, T., Shomali, Z. H., Roberts, R., Hieronymus, C. F. and Bödvarsson, R. (2008). S and P velocity heterogeneities within the upper mantle below the Baltic Shield. Tectonophysics, 462(1-4), 109-124.
Olsson, S., Roberts, R. and Bödvarsson, R. (2008). Moho depth variation in the Baltic Shield from analysis of converted waves. GFF, 130, 113-122.
Eken, T., Shomali, Z. H., Roberts, R. and Bödvarsson, R. (2007). Upper-mantle structure of the Baltic Shield below the Swedish National Seismological Network (SNSN) resolved by teleseismic tomography. Geophys. J. Int., 169(2), 617-630, doi: 10.1111/j.1365-246X.2007.03351.x
Olsson, S., Roberts, R. and Bödvarsson, R. (2007). Analysis of waves converted from S to P in the upper mantle beneath the Baltic Shield. Earth Planet. Sci. Lett., 257(1-2), 37-46.
Olsson, S., Roberts, R., Shomali, H. and Bödvarsson, R. (2007). Tomographic inversion of P410s delay times for simultaneous determination of P and S velocities of the upper mantle beneath the Baltic Shield. Phys. Earth Planet. Int., 160(2), 157-168, doi: 10.1016/j.pepi.2006.11.005
Hieronymus, C. F., Shomali, Z. H. and Pedersen, L. B. (2007). A dynamical model for generating sharp seismic velocity contrasts underneath continents: Application to the Sorgenfrei-Tornquist Zone. Earth Planet. Sci. Lett., 262(1-2), 77-91, doi: 10.1016/j.epsl.2007.07.043
Hyvönen, T., Tiira, T., Korja, A, Heikkinen, P., Rautioaho, E., and the SVEKALAPKO Seismic Tomography Working Group. (2007). A tomographic crustal velocity model of the central Fennoscandian Shield, Geophys. J. Int., 168, 1210-1226. doi: 10.1111/j.1365-246X.2006.03242.x
Gregersen, S., Voss, P., Shomali, H., Grad, M. and Roberts, R. G. (2006). Physical differences in the deep lithosphere of northern and central Europe. Geological Society of London, Memoirs, 32, 313-322.
Shomali, Z.H., Roberts, R.G., Pedersen, L.B., and the TOR Working Group1). (2006). Lithospheric structure of the Tornquist Zone resolved by nonlinear P and S teleseismic tomography along the TOR array, Tectonophysics, 416, 133–149, doi: 10.1016/j.tecto.2005.11.019
Bödvarsson, R. and Lund, B. (2003). The SIL Seismological Data Acquisition System - As Operated in Iceland and in Sweden. In: Methods and Applications of Signal Processing in Seismic Network Operations (pp. 268). Springer, Heidelberg.
Lund, B., Bödvarsson, R. (2002). Correlation of microearthquake body-wave spectral amplitudes, Bull. Seismol. Soc. Am., 92, 2419-2433.
Shomali, H., Slunga, R. (2000). Body wave moment tensor inversion of local earthquakes: An application to the South Iceland seismic zone. Geophys. J. Int., 140, 63-70.
Bödvarsson, R. (1999) The new Swedish seismic network. Orfeus Newsletter 1(3).
Bödvarsson, R., Rögnvaldsson, S.Th., Slunga, R., Kjartansson, E. (1999). The SIL data acquisition system at present and beyond year 2000. Phys Earth Planet. Intern. 113 89-101.
Lund, B., Slunga, R. (1999). Stress tensor inversion using detailed microearthquake information and stability constraints: Application to Ölfus in southwest Iceland. J. Geophys. Res., 104:14947-14964.
Bödvarsson, R., Rögnvaldsson, S.Th., Jakobsdottir, S.S., Slunga, R., Stefánsson, R. (1996). The SIL data acquisition and monitoring system, Seismol. Res. Lett., 67, 35-46.
Slunga, R., Rögnvaldsson, S. T., and Bödvarsson, R. (1995). Absolute and relative locations of similar events with application to microearthquakes in southern Iceland, Geophys. J. Int., 123, 409-419.
Rögnvaldsson, S. T., Slunga, R. (1993). Routine fault plane solutions for local networks: A test with synthetic data, Bull. Seismol. Soc. Am., 83(4), 1232-1247.
Slunga, R. (1991). The Baltic Shield earthquakes, Tectonophysics, 189, 323-331.
Slunga, R. (1984). Baltic Shield seismicity, the results of a regional network, Geofys. Res. Lett., 11, 1247-1250.
Slunga, R. (1981). Earthquake source mechanism determination by use of bodywave amplitudes - an application to Swedish earthquakes. Bull. Seismol. Soc. Am., 71(1):25-35.
Joshi, N. (2024) Bias-adjusted analysis of global natural disaster records and an assessment of seismic hazard in Sweden Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 2347, Uppsala.
Beckel, R.A. (2022) Active and passive seismic methods for investigatig the glacially-triggered Burträsk fault, Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 2112, Uppsala.
Fälth, B. (2018) Simulating Earthquake Rupture and Near-Fault Fracture Response, Doctoral Thesis, Dep. of Earth Sciences, Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1661, Uppsala.
Sadeghisorkhani, H. (2017) Analyses and application of ambient seismic noise in Sweden, source, interferometry, tomography, Doctoral Thesis, Dep. of Earth Sciences, Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1511, Uppsala.
Lindblom, E. (2011) Microearthquake Study of End-glacial Faults in Northern Sweden, Licentiate thesis, Dep. of Earth Sciences, Uppsala University.
Eken, T. (2009) Isotropic and Anisotropic P and S Velocities of the Baltic Shield Mantle: Results from Analyses of Teleseismic Body Waves, Doctoral thesis, Dep. of Earth Sciences, Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 653, Uppsala.
Olsson, S. (2007) Analyses of Seismic Wave Conversion in the Crust and Upper Mantle beneath the Baltic Shield, Doctoral thesis, Dep. of Earth Sciences, Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 319, Uppsala.
Shomali, Z.H. (2001). Dynamic Source Models of Icelandic Earthquakes and Teleseismic Tomography along the TOR Array, Doctoral thesis, Dep. of Earth Sciences, Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 650, 31pp, Uppsala. ISBN 91-554-5098-9.
Lund, B. (1999) Crustal stress studies using microearthquakes and boreholes, Doctoral thesis, Dep. of Earth Sciences, Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 517, 75pp, Uppsala. ISSN 1104-232X.
Lund, B., Mäntyniemi, P., Sadeghi-Bangherabadi, A., Korja, A., Lundwall, J. (2024). Comparing European Seismic Hazard Models, Energiforsk Report 2024:1013, 63 pp.
Beckel, R., Schmidt, P., Lund, B. (2024). Kvalitetssäkring och komplettering av ICES register över impulsiva ljudkällor i Östersjön och Västerhavet med seismiska mätdata, Havs- och vattenmyndigheten, 28 pp.
Lund, B., C. Juhlin, M. Roth, M. Schieschke, C. Nygren, A. Clarke, S. Dathan, A. David, A. Stork, (2021). Field test of seismic equipment in borehole HFM42 in Forsmark, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden, 105pp.
Lund, B., K. Högdahl, (2021). On seismic hazard assessment for the Malmberget mine tailings dam, LKAB, Sweden, 65pp.
Lund, B., K. Högdahl, (2021). On seismic hazard assessment for the Aitik mine tailings dam, Boliden AB, Sweden, 62pp.
Lund, B., M. Roth, (2020). Analysis of seismic recordings at E.ON’s Malmö location, July 2018 – November 2019 and the earthquakes of southernmost Sweden, E.ON, Malmö, Sweden. 36pp.
Lund, B., M. Roth, K. Berglund, (2019). Assessment of the geophone at 620 m depth at EON’s FFC location, E.ON, Malmö, Sweden, 21pp.
Lund, B., K. Högdahl, (2018). Seismic hazard assessment for a tailings dam at the Garpenberg mine, Boliden AB, Sweden, 60pp.
Lund, B., R. Roberts, C. Smith, (2017). Review of paleo-, historical and current seismicity in Sweden and surrounding areas with implications for the seismic analysis underlying SKI report 92:3, 2017:35, Swedish Radiation Safety Authority, Stockholm, Sweden, 62pp, ISSN 2000-0456.
Lund, B., R. Bödvarsson, L. Dynesius, M. Schieschke (2017) Forsmark site investigation. Study of high-frequency seismic signals in the Forsmark area. P-17-12, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Korja, A., S., Kihlman (eds), (2016). Seismic source areas in central Fennoscandia, Report S-64, Institute of Seismology, University of Helsinki, Finland.
Lund, B., R. Bödvarsson, L. Dynesius, J. Kamm, M. Schieschke (2015) Forsmark site investigation. Study of signals induced in a 150 m long borehole mounted cable in the Forsmark area. Submitted to the Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Sarri, J. (ed.), B. Lund, P. Mäntyniemi, K. Oinonen, T. Tiira, M. Uski, T. Vuorinen (2015) Evaluating seismic hazard for the Hanhikivi nuclear power plant site, Seismological characteristics of the seismic source areas and attenuation of seismic signals, NE-3957, ÅF-Consult Oy, Helsinki, Finland.
Korja, A., Kosonen (eds) (2014) Evaluating seismic hazard for the Hanhikivi nuclear power plant site, part 2. Seismotectonic framework and seismic source area models in Fennoscandia, northern Europe, S-61, Institute of Seismology, University of Helsinki, Finland.
Lund, B., Bödvarsson, R., Shomali, H. and Dynesius, L. (2012). Study of seismic background signals in the Forsmark area. Forsmark site investigation, P-12-06, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Lagerbäck, R and Sundh, M. (2008) Early Holocene faulting and paleoseismicity in northern Sweden, C 836, Swedish Geological Survey of Sweden, pp. 84.
Bödvarsson, R., Lund, B., Roberts, R. and Slunga, R. (2006). Earthquake activity in Sweden. Study in connection with a proposed nuclear waste repository in Forsmark or Oskarshamn. R-06-67, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Lund, B. (2005) Large earthquakes during a glacial cycle, in S. Hora and M. Jensen Expert panel elicitation of seismicity following glaciation in Sweden, Report 2005:20, Swedish Radiation Protection Authority (SSI), Stockholm, Sweden, p. 107-119.
Bödvarsson, R., Lund, B., Roberts, R., Slunga, R. och Tryggvason, A. (2004). Seismologisk studie relaterad till Citybanan i Stockholm.
Hagos, L., Roberts, R., Slunga, R., Bödvarsson, R. and Lund, B. (2004). A preliminary study regarding measures of earthquake risk in Sweden. In: Värdering av jordbävningsrisk - förstudie, Report to "Kraftbolagens Beräkningsgrupp": Swedish Nuclear Power Inspectorate (SKI), Stockholm, Sweden.
Lund, B. (2018 - ) Swedish National Seismic Network (SNSN). A short report on recorded earthquakes during the Nth quarter of the year 20XX, quarterly reports to the Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Bödvarsson, R. (2002 - 2017) Swedish National Seismic Network (SNSN). A short report on recorded earthquakes during the Nth quarter of the year 20XX, quarterly reports to the Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.